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LETTER TO THE EDITOR 

Eigenvalue statistics of disordered conductors 

R Harrist and Zhida Yan 
Depanment of Physics and Centre for the Physics of Maferials, McGill Universily. Rutherford 
Building, 3600 University Street Montreal, Qu6bec H3A 2T8. Canada 

Received 19 July 1993 

AbstracL We apply the statistical measures of Wigner. Dyson and Mehta Lo quantum- 
mechanical syslems having inlrinsic disorder. We observe a transition from regular Poisson-like 
to Wiper-like eigenvalue statistics, and relate lhese two limiting behaviours Lo Ihe ballistic 
and mesosmpic regimes OF quanlum transport In svongly disordered systems we observe that 
Lhe eigenvalue spectra have a more complex smcture. whose nature seem to provide a useful 
indicator of Vansport behaviour. We also observe similar effecu in the spectra of quantum- 
mechanical syslems whose classical analogues exhibit chaotic behaviour, and we can therefore 
provide a semiquantitative description of lhe non-universal conductance fluctuations recently 
observed by Marcus and co-workers in ballistic micrormctures. 

Since the realization by Wigner [ 11 that the spectra of complex nuclei could be interpreted 
in terms of the eigenvalue properties of random matrices, the study of such matrices has 
become an active area of research [2, 31. In particular, it has been shown that the statistical 
properties of the eigenvalues show fluctuations that are anomalously small, so that, for 
example, the variance of the number of eigenvalues in a given range of energy depends 
only logarithmically on the value of the range [4]. Such statistical properties have frequently 
been employed to identify systems that share the same universal properties as the random 
matrices of Dyson and Mehta. 

One such area of current interest is the study of quantum-mechanical disordered systems, 
where recent work [SI has emphasized statistical properties analogous to those of systems 
which are classically chaotic [6]. Appropriate descriptions can therefore be given either via 
semi-classical methods or directly in terms of the theory of random matrices. However, 
much of this work has been motivated by the universal behaviour [7] of transport properties, 
not on the statistics of the eigenvalues of the disordered Hamiltonians. A particular exception 
is work on the ‘kicked rotator’, which can be mapped onto the disordered Anderson 
Hamiltonian in one dimension, and where the localization index of the wavefunctions can 
be related to the character of the eigenvalue specbum [SI. 

The universal behaviour of transport properties refers to conduction in disordered 
systems in the ‘mesoscopic’ regime, where the mean free path, t ,  is smaller than the typical 
size of the system, L,  but where the coherence length e of the electron wavefunctions still 
exceeds L. This is the regime of weak localization, where as shown by Al’tshuler [7] 
and later by Lee and co-workers [9], the conductance g of the samples exhibits universal 
fluctuations of amplitude Ag close to e 2 / h .  The connection of these fluctuations to the 
statistics of eigenvalues was first made by Al’tshuler and Shklovskii [IO], but in subsequent 
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work their direct approach has been superseded by use of the statistical properties of transfer 
matrices [ 111. In terms of numerical work, however, there are significant advantages to the 
statistical analysis of eigenvalues, since larger and more complex systems can be employed 
when eigenfunctions and/or matrix elements are not required. 

In this letter, we study disordered mesoscopic systems using numerical investigations of 
their eigenvalue statistics. In the usual regime, t! < L < 6 ,  we observe entirely Wigner-like 
spectra, corresponding to the existence of conductance fluctuations of universal amplitude. 
In the limit when the disorder is very strong, we observe behaviour which is energy 
dependent, displaying transitions from regular (Poisson-like) to Wigner-like behaviour, and 
which suggests a description for conductance fluctuations of non-universal amplitude. As an 
application of this description, we also analyse the eigenvalue statistics of ‘stadia’: systems 
in the ballistic regime. We show for the first time that the boundary scattering in these 
systems has an effect on the eigenvalue statistics essentially indistinguishable from the 
effects of disorder, and suggest that non-universal conductance fluctuations should therefore 
be observed. Recent experiments on nanostructure devices designed to resemble ‘stadia’ 
[I21 lend support to our point of view. 

The inspection of the eigenvalue spectrum is performed using the A3 statistic of Dyson 
and Mehta [4], which is related to the variance X 2 ( E .  E$) of the number of eigenvalues in 
the range E, [ 131. Following a conventional procedure [14], we renormalize the eigenvalue 
spectrum so that it has a mean spacing of one unit, and then define N ( E )  to be the number 
of renormalized eigenvalues below energy E. A3(Et E$) is the variance of the best linear 
fit to N ( E )  over a range of E, units commencing at E, averaged over a range ER of E : 

There are well known results for A3 in the case when there is no dependence on E, 
namely when the eigenvalue sequence is homogeneously distributed. When the Ei are taken 
from a random distribution in the range [0, n]. so that the spacing of adjacent eigenvalues 
has a Poisson distribution as in a regular (integrable) system [15] 

When the Ej are the eigenvalues of a random matrix having time-reversal invariance 
belonging to the Gaussian orthogonal ensemble (WE) 

AGO€ E rr-*(log E, + 0.0687) E, t 0.5 

5 S E ,  E, << 1. 

This logarithmic GOE behaviour is also the signature of quantum systems whose classical 
analogues are chaotic [2]. 

Figure 1 shows our results for rectangular samples, where the simple tight-binding 
Hamiltonian with diagonal disorder is defined on a square mesh with E 5000 mesh points. 
In units of the nearest-neighbour matrix element, the diagonal site energies are either + lo  
or 0, chosen randomly with probabilities c and 1 - c respectively. In cases where there are 
two subbands, only the one at lower energy is used for analysis. The curve for c = 0.0 is 
the case of no disorder and is included for completeness: !he other curves show A3(E. E,) 
for the range c = 0.001 to 0.008. Each data set is averaged over the entire energy range, 
since for .Es < 25 units there is only a weak dependence of A3(E, E,) on E. the position 
in the band 1161. Using a range ER = 200 units we find a variation in As of around 10.1 
for E, E 20. 
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Figure 1. A % ( E ,  E,) as a function of E ,  for weakly disordered systems. The curves are labelled 
with values of the concentration c. All the curves are averages over a complete data set. as 
described in the text. The inset shows the order parameter p as a function of c. 

The data show a clear transition from Poisson to GOE behaviour. Such a transition 
has been observed elsewhere in a variety of different quantum systems [3, 171, where 
the corresponding classical systems display regular (integrable) and chaotic behaviour 
respectively, and where the spectra can be fitted with an order parameter p, which represents 
the eigenvalues as superpositions of independent Poisson and GOE sequences. Such an 
analysis [ le] gives 

A3(E,  E$) = APisson[E, (1 - &)Es] + AfoE(E,  PES) 

where p is the fraction of eigenvalues belonging to the chaotic GOE sequence(s). Although 
we do not propose a semi-classical analysis of our tight-binding models, we adopt p as a 
useful (dis)order parameter for our data: it is shown as a function of c in the inset to figure 
1. We see no advantage in adopting the parametrization of Izrailev [8], since it is the least 
reliable in our regime of interest. 

In the language of (quantum) transport theory, the data of figure 1 correspond to the 
ballistic regime L < .? < t ,  where conductance fluctuations, although present, do not 
have the universal amplitude. However, since the data for c 5 0.008 is close to the limit 
L e ,  where the universal amplitude is first obtained, a further increase in the parameter c 
produces data which for some ranges of energy are in the mesoscopic regime, e < L i e .  
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Typical behaviour of A3 in such a case is shown in the upper part of figure 2 for c = 0.15: 
it is qualitatively different, showing a systematic transition from COE behaviour, j~ N 1, 
in the centre of the band to Poisson behaviour, p N 0, at the band edges. Comparison 
with computations of the conductivity in similar models 119. 201 suggests that this is a 
transition from extended states, which show the characteristic conductance fluctuations of 
universal amplitude, to localized states which exhibit insulating behaviour. Our preliminary 
calculations of the participation ratio for the wavefunctions in smaller systems confirm this 
suggestion, which is also in accord with the analysis of Izrailev [PI. whose localization 
length is essentially equivalent, within a normalization factor, to the participation ratio. 
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Figure 2. A)(E. E,) as a function of E,  for different energy ranges and 11 as a function of 
E for c = 0.15 and e = 0.35. The data are ensemble avenges over 10 samples wilh differcm 
representations of the disorder. A, is shown for values of E just a b v e  [he cenlre of the band, 
half way tewecn the centre and the lop of the band, and near the lop of the band. and in each 
case is averaged over a range En = 200 uniu. p is obtained for ranges ER = 100 unils. as 
described in the text 

An original and informative way to describe this behaviour is to plot p as a function of 
E.  This is also shown in the upper part of figure 2 each data point represents an average 
over a range ER = 100 units. Varying ER does not change the data in any significant way, 
and thus we conclude that the distribution of the eigenvalues changes from GOE to Poisson 
in a gradual manner. The analysis shows no sign of an abrupt mobility edge: p varies 
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gradually with energy in a manner closer to that of Ag than to that of the participation ratio 
[W. 

Further infoimation is presented in the lower part of figure 2, where c = 0.35, such 
that the disorder is ‘strong’ and t c $ c L. The behaviour of AS shows clearly that this 
regime corresponds, again, to a superposition of Go€ and Poisson distributions, but here the 
value of !J never reaches its maximum value of unity. It is also known that in this regime 
Ag no longer has a universal amplitude, even in the centre of the band where g itself 
shows metallic behaviour [19]. Indeed, Ag varies with energy in much the same way as the 
parameter p, so that it seems appropriate to use the value of p to predict the value of Ag. If 
only those states obeying GOE statistics contribute to the fluctuations, in a natural extension 
of Al’tshuler and Shklovskii’s original idea [lo], then we might replace the density of states 
at the Fermi energy, N ( E F ) ,  which occurs in the Kubo expression for the conductivity, by 
p.N(EF), and write Ag pz. This semi-quantitative relationship is also consistent with 
the data of Harris and Houari [20], computed for a tight-binding Hamiltonian with various 
types of substitutional and topological disorder in two dimensions, and where Ag is around 
0.1 times g itself. 

We further suggest that this relationship provides a description for the non-universal 
conductance fluctuations observed in the ballistic regime, and in particular in the 
nanostructures of Marcus and co-workers [ 121. To illustrate this idea, we have computed 
the eigenvalue statistics of a set of ‘stadia’ that interpolate between a rectangle and a 
conventional half-stadium. The rectangle has vertices at (iL, L )  and (+L,  L - &), 
and the half stadium is bounded by the rectangle and also by the inscribed semicircle of 
radius L ,  centred at (0.0). Intermediate stadia cover the region interior to the rectangle 
and to semi-circles of different radii R, all centred at (0, 0), but varying in radius from 
R = &L (the rectangle) to R = L (the stadium), as shown in the inset to figure 3. They 
are specified by a parameter p = f i  - R / L .  The analysis is carried out by discretizing 
the wave equation on a square mesh, and computing its eigenvalues by direct solution of 
the matrix eigenvalue problem, effectively solving a tight-binding model on a finite lattice. 
The mesh size is chosen so that there are Y 5000 odd-parity eigenvalues in the finite band. 

The results are shown in figure 3. Only eigenvalues corresponding to states of odd 
parity with respect to reflections about symmetry axes are used, and as in the case of the 
disordered systems, each data set is averaged over the entire energy range. To make contact 
with the data of Marcus et al. we propose that their stadia (and for that matter their circles) 
are not completely in the GO€ regime, so that p c 1. There are a number of reasons 
why this might be so. One possibility is that their stadia are not perfect, but resemble our 
intermediate structures. This seems consistent with their observation that the effective areas 
of their structures are some 30% smaller than shown in the micrographs. If for example 
we choose p Y 0.0, then !J = 0.3, which gives a value of Ag around 10% of the universal 
value, consistent with the experiments. It is also possible that the potential distributions 
inside the experimental stadia are distorted by long-range Coulomb potentials from charged 
impurities located outside the stadia Such a situation would also give rise to reduced 
amplitude for the conductance fluctuations, much as in the presence of rough edges to the 
samples [21]. 

In conclusion, we have shown that in many important respects, the behaviour of electrons 
is the same both in conventional disordered environments, and in surroundings leading to 
classical chaos. Differences appear only when the disorder is sufficiently large that samples 
are in the true mesoscopic regime. We also propose that an analysis of the electronic 
eigenvalue spectrum in terms of the Wigner-Dyson-Mehta statistics is a valuable tool for 
the investigation of transport in ballistic and mesoscopic systems, as well as for systems 
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Figure 3. A 3 ( E ,  E J  as a function of E, for systems intermediate between Le stadium and lhe 
rectangle. The curves are labelled with values of the parameter p = 4 - R / L .  All the curves 
are averages over a complete dam set, as described in the text. One inset shows the geomevy 
of (one half 00 a stadium. the other shows the order parameter 1.1 as a function of p. 

beyond the mesoscopic regime, with the order parameter p having a close association with 
the amplitude of the conductance fluctuations Ag. Semi-quantitative agreement with the 
data of Marcus and co-workers suggests that detailed analysis of the relationship between 
p, Ag and g itself would be most productive. Such investigations are ongoing. 

We thank Hong Guo for frequent conversations and advice, and C M Marcus for a helpful 
discussion. Funding for the project was from the NSERC of Canada and from le Fonds 
pour la Formation des Chercheurs et I'Aide i3 la Recherche de la Province du Quebec. 
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